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We study the effect of varying strength & of bond randomness on the phase transition of the three-
dimensional Potts model for large ¢q. The cooperative behavior of the system is determined by large correlated
domains in which the spins point in the same direction. These domains have a finite extent in the disordered
phase. In the ordered phase there is a percolating cluster of correlated spins. For a sufficiently large disorder
6> 6, this percolating cluster coexists with a percolating cluster of noncorrelated spins. Such a coexistence is
only possible in more than two dimensions. We argue and check numerically that §, is the tricritical disorder,
which separates the first- and second-order transition regimes. The tricritical exponents are estimated as
B/ v,=0.10(2) and v,=0.67(4). We claim these exponents are g independent for sufficiently large ¢. In the
second-order transition regime the critical exponents B3,/ v,=0.60(2) and v,=0.73(1) are independent of the

strength of disorder.
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I. INTRODUCTION

The effect of bond randomness on the critical behavior of
ferromagnetic models is well understood if the nonrandom
system has a second-order phase transition [1]. Much less is
known, however, if this transition is discontinuous [2]. In
two dimensions (2D) rigorous results assert that for any type
of continuous disorder the transition softens into a second-
order one [3]. Recent numerical studies of the 2D g-state
random-bond Potts model [4] (RBPM) have shown that the
magnetization exponent of this model is ¢ dependent [5,6]
and saturates [7,8] for large ¢ at a possibly exactly known
value [9,10]. On the other hand, the energy exponent v is
found to show only a very weak variation with g.

In real 3D systems the effect of bond randomness is more
complex and here we are lacking rigorous results. It is dem-
onstrated experimentally that the isotropic-to-nematic transi-
tion of nCB liquid crystal turns to second order for suffi-
ciently strong disorder [11]. The same type of softening
effect is found in Monte Carlo simulations for the g=3 and
q=4 Potts models, for both site [12,13] and bond [14] dilu-
tion. With very large computational effort it was possible to
locate the second-order transition point and to estimate the
critical exponents, which are found to be ¢ dependent for
both the magnetization and energy density.

The first-order transition regime (for weak disorder) and
the second-order transition regime (for strong disorder) are
separated by a tricritical point, the properties of which are
conjectured to be related to the critical point of the random-
field Ising model (RFIM). As shown by Cardy and Jacobsen
[6] in the limit of d — 2 and g — <° the interface Hamiltonians
of the two problems have the same type of solid-on-solid
(SOS) description, from which it follows that the energy ex-
ponents of the tricritical RBPM are equivalent to the magne-
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tization exponents of the critical RFIM. Furthermore, analyz-
ing the renormalization group (RG) flow it was conjectured
that the above mapping stays valid for d>2, in particular at
d=3. Thus the tricritical exponents should be g independent,
at least for large ¢, leading to the same exponents for any
disorder-induced tricritical points.

These conjectures, which could be of experimental rel-
evance, have not yet been verified numerically. The inaccu-
racies in the simulations have mainly two sources: (i) it is
difficult to precisely locate the tricritical point due to strong
crossover effects and (ii) for not too large ¢ the tricritical
disorder is quite small which results in large breaking-up
lengths in the system [10]; thus, one has to treat quite large
lattices.

In the present paper we consider the 3D ferromagnetic
Potts model [15] for large values of ¢, which has a strongly
first-order transition for nonrandom couplings, and study the
effect of bond randomness including also the case of bond
dilution. In the large-g limit the high-temperature expansion
of this problem [16] is dominated by a single diagram [17]
which is exactly calculated by a combinatorial optimization
method [18]. Weak disorder is studied perturbatively,
whereas for stronger disorder we have performed extensive
numerical calculations. In particular we have studied the
properties of the tricritical point and checked its possible
relation with the critical fixed point of the RFIM. We have
also studied the form and universality—i.e., disorder
independence—of the critical singularities. For these quanti-
ties some results have already been announced in a Letter
[19].

The structure of the paper is the following. The RBPM
and optimization method used in the study for large ¢ is
presented in Sec. II. Perturbative treatment of the problem in
the weak disorder limit is shown in Sec. III. Numerical re-
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sults of the phase diagram as well as of critical and tricritical
singularities are given in Sec. IV and discussed in Sec. V.

II. MODEL AND ITS PHASE DIAGRAM

The g-state Potts model [15] is defined by the Hamil-
tonian

Hz_zjij5(0i’qj) (1)
()
in terms of the Potts-spin variables 0,=0,1,...,g—1. Here i
and j are sites of a cubic lattice and the summation runs over
nearest neighbors. The couplings, J;;>0, are ferromagnetic
and identically and independently distributed random vari-
ables. In this paper we use a bimodal distribution

P(Jij) =pd(J(1+9) _Jij) +(1=p)8(J(1-9) _Jij)a (2)

with p=1/2. The parameter 0 <=1 plays the role of the
strength of disorder, and at 6=0 and 6=1 we recover the
nonrandom and diluted systems, respectively.

For a given set of couplings the partition function of the
system is conveniently written in the random cluster repre-
sentation [16] as

z=2,¢"9 ] [¢#i-1], 3)
G

ijeG

where the sum runs over all subsets of bond G and c¢(G)
stands for the number of connected components of G. In Eq.
(3) we use the reduced temperature 7— T In g and its inverse
B— B/1In g, which are of O(1) even in the large-g limit [10].
In this limit we have ¢#/i>1 and the partition function can
be written as

Z= 2 ¢%9, $(G)=c(G)+B 2 Jj, (4)

GCE ijeG

which is dominated by the largest term ¢ =max;¢(G). Note
that the optimal set itself generally depends on the tempera-
ture. The free energy per site is proportional to ¢" and given
by —Bf=¢"/N where N stands for the number of sites of the
lattice.

The optimization problem in Eq. (4) contains a cost func-
tion ¢(G), which is submodular [20], and there is an efficient
combinatorial optimization algorithm, which at any tempera-
ture works in strongly polynomial time [18]. This algorithm
finds a set of bonds which minimizes the cost function. We
call such a set an optimal set. The variation of the optimal set
with the temperature is illustrated [21] in Fig. 1 for &
=0.875 and L=24. At low temperature the optimal graph is
compact and the largest connected subgraph contains a finite
fraction of the sites. In the other limit, for high temperature,
most of the sites in the optimal set are isolated and the con-
nected clusters have a finite extent, the typical size of which
is used to define the correlation length &.

Between the low-temperature (ordered) and high-
temperature (disordered) phases in the thermodynamic limit
there is a sharp phase transition. The numerically calculated
phase diagram as a function of the temperature 7" and the
disorder &is shown in Fig. 2. A detailed analysis of the phase
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FIG. 1. (Color online) Connected parts of typical optimal sets
with L=24 at 6=0.875. Top: T=3.122J<T,.. Center: T=3.141J
~T.. Bottom: T=3.200/>T.,.

diagram is postponed to Sec. IV. Here we just note that the
transition is of first order for weak disorder, in which case ¢
stays finite at the transition point, but the transition is of
second order for strong enough disorder, when the correla-
tion length is divergent at the transition point. This second
possibility is illustrated in the central part of Fig. 1, when at
the transition point the largest connected cluster is a fractal
and its fractal dimension d; is related to the magnetization
critical exponent; see Sec. IV. The fractal dimension of the
giant connected cluster at the transition point is shown in the
inset of Fig. 2, as calculated in Sec. IV C. In the first-order
regime it is d,=3—i.e., the cluster is compact—whereas in
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FIG. 2. Phase diagram of the random-bond Potts model for bi-
modal disorder. In the ordered phase in the optimal set the noncon-
nected sites are percolating for 6> §,, and T,(8) <T<T.(8). Nu-
merical results indicate that the first- and second-order transition
regimes are separated by a tricritical disorder §,, which corresponds
to the border of the percolation regime, .=, Inset: fractal di-
mension of the giant connected cluster at the transition point as
calculated in Secs. IV C and IV D. The straight lines at dy=3 and
dr=2.40 indicating the values at the first-order and second-order
transition regimes, respectively, are a guide to the eye.

the second-order regime it is dy<<3 and practically indepen-
dent of the strength of disorder. At the tricritical disorder &,
the giant cluster is a fractal but its fractal dimension is dif-
ferent from that in the critical regime; see Sec. IV D.

III. PERTURBATIVE CALCULATION FOR WEAK
DISORDER

A. Nonrandom model and Imry-Ma-type argument for weak
disorder

In the nonrandom model, 6=0, there are only two homo-
geneous optimal sets, which correspond to the 7=0 and T
— o0 solutions, respectively; see Ref. [21]. For T<T,(0) it is
the fully connected diagram with a free energy, —BNf=1
+NBJd, and for T>T.(0) it is the empty diagram with
—BNf=N [22]. Consequently the transition point is located at
T.00)=Jd/(1-1/N) and the latent heat is Ae/T,(0)=1
—1/N. In the thermodynamic limit these results correspond
to the mean-field solution of the problem which is known to
be exact [23] for g— .

In the presence of disorder, >0, the optimal sets are
homogeneous only in a limited temperature range and new
nonhomogeneous optimal diagrams appear; see Fig. 1. In the
disordered phase in the vicinity of T.(0) the typical linear
size of the connected clusters, /, can be estimated along the
lines of the Imry-Ma argument [24]. Adding to the optimal
set a cluster with a number of sites of the order /¢ will de-
crease the number of connected components and therefore
increase the cost function by 1. On the other hand, it will add
a number of the order of dl“—dl“! bonds, each having a
weight (1+08)/d since the temperature is close to 7,.(0). It
results in a competition between a term behaving like [,
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which represents the gain due to disorder fluctuations, and a
term like /%=, which is the loss due to the creation of an
interface. In d=2 the two terms balance each other and ex-
treme fluctuations of the disorder will create clusters of un-
limited size [10]. As a consequence in 2D there is no coex-
istence of pure phases and the transition is of second order
for any small amount of disorder [3].

On the contrary in d>>2, in particular in three dimensions
for weak disorder the surface term is dominating; thus, the
connected clusters have a finite extent and the transition is of
first order in accordance with the phase diagram in Fig. 2. In
this case connected clusters are created due to extreme fluc-
tuations of disorder and the statistics of these rare regions
will be considered in the following subsection. A similar
analysis of the ordered phase will be given afterward in Sec.
I C.

B. Disordered phase

Here we make the estimate of the free energy as simple as
possible and therefore we consider rare regions of the shape
of cubes of linear linear size /=2, in which all the n,=3(*
—1?) internal couplings are strong, being J(1+ ). The cost
function of the diagram in which all the bonds of the cube
are present relative to the empty graph is given by

AL (D) =3B =P)J(1+8)-(~1). (5)

The optimal set is then the inhomogeneous one containing
the connected cluster if Af, (/) >0, which could take place if
the disorder satisfies the relation 8> §*([), with

8,() = l;—zl (6)

In another words for a given disorder &, there is a limiting
size [,(8)=(1+V1+468)/26~1/6 and only large enough
clusters with /=1,(5) can exist in the optimal graph, pro-
vided the temperature is in the range of 3<T/J<T,(I)/J
=3+3[6-6,()]/[1+6,(I)]. Thus for weak disorder only
large (and very rare) clusters can be found, and as the disor-
der is increased at discrete values of & new, smaller, and
more probable connected clusters will appear. This mecha-
nism will lead to discontinuous behavior of the free energy
as a function of the disorder, which is indeed observed in
numerical calculations.

The probability of having all n, couplings strong in a
cube is exponentially small, P,(I)=27"+; thus, the density of
connected cubes of size ! in the optimal set is given by
p+(l)=2_3(13_]2). The free energy of the nonhomogeneous op-
timal set is given by the sum of contributions of the con-
nected clusters of different size:

~BNfe=N+N 2 Af(Dp,(0). (7)
1=1,(6)
Since p, (1) is a very rapidly decreasing function of /, the sum
in Eq. (7) is dominated by the term with [=1,(5).
C. Ordered phase

In the ordered phase, T<T,(0), we consider rare regions
of extreme disorder fluctuations also of the shapes of cubes
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with /=1, so that all the couplings, n_(I)=3(*+1?), starting
from the points of the cubes are weak, being J(1-5). The
cost function of the diagram in which all weak bonds of the
cube are absent—i.e., there is a cube of isolated points em-
bedded in the full diagram—relative to the full graph is
given by

Af- (D=L =3B +12)J(1-0). (8)

As for the disordered phase the optimal set is the inhomoge-
neous one containing the isolated points if Af_(7)>0, which
is the case for strong enough disorder 6> &_(1), with

1
()= il 9)
Now for a given disorder &, the limiting size is I_(8)=1/6
—1=1/8and [=1_(5) “empty clusters” exist in the optimal
graph in the range of temperature 3>T/J>T_(I)/J=3
+3[8-6_(1)]/[1+6_(D)]. Now the density of cubes of iso-
lated points of size [ in the optimal set is given by p_(I)

3,2 .
=2730"+1) and the free energy of the nonhomogeneous opti-
mal set can be written as

—BNf.=1+NBJd+N > Af.(Dp_(]), (10)
1=1_(6)

which is dominated by the term with [=[_(J).

D. Phase transition

The phase-transition temperature 7.(5) is obtained by
equating the free energy in the two phases: f_=f,. It is com-
paratively easier to create an “empty cluster” in the ordered
phase than a connected cluster in the disordered phase which
results in a shift of the phase boundary towards higher tem-
peratures as the disorder is increasing; see Fig. 2. Further
observation shows that the phase boundary is discontinuous
at 8,(1) and &_(I) for all integer I’s. For small &, which cor-
responds to large /’s these jumps are very frequent and from
a mathematical point of view the phase boundary is a
nonanalytical function of 6. However, these jumps are very
small and the phase boundary can be approximated by a
continuous curve which asymptotically behaves as

In[7, - 7.(0)] ~ - ~

§. (11)

We obtain similarly, for the latent heat and for the jump of
the magnetization at the transition point

1
In(Ae/T,— 1) ~In(Am - 1) ~ - rx (12)

Thus the phase transition stays first order, and as the disorder
is switched on there is an essential singularity in the thermo-
dynamical quantities as a function of 6.

E. Distribution of the finite-size transition temperature

For a large finite system of linear size L and for a given
realization of the disorder one can define a transition tem-
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perature T,(L) at which the disordered phase and the ordered
phase (having a spanning giant cluster) coexist. The distribu-
tion of T,(L) is discontinuous for a finite system but expected
to be Gaussian for large L, so characterized by its average
T®(L) and its variance var[T.(L)]=[AT.(L)]>. The shift of
the average is asymptotically given by

T(L) = To() ~ L7, (13)
whereas the width scales with another exponent v as
AT.(L) ~ L7 (14)

These relations define the exponents v and 7 and hold for
second-order [25-29] as well as for first-order phase transi-
tions [30,31]. At a first-order transition what we study here ¥
is just the discontinuity fixed-point value of the correlation
length exponent [32,33] and given by ?=v,=1/d. This ex-
ponent describes the variation of a diverging length scale
which can be measured in a typical sample. The width of the
distribution can be obtained from the consideration that the
density of clusters, p,, has a fluctuation in finite systems
which has a width of Ap.(L)/p.~ pL™%* according to the
central-limit theorem. The fluctuations in Ap,(L) are then
seen in the fluctuations of T,.(L), too, leading to an exponent,
v=2/d. This exponent is related to another diverging length
scale, which can be deduced from the study of average quan-
tities. Note that this length is not present in the pure system,
and by switching on disorder its prefactor p, presents an
essential singularity as a function of 6. These results are in
accordance with the considerations presented in Sec. VII of
Ref. [30]. Numerical analysis of T,.(L) for stronger disorder
is given in Sec. IV.

F. Breaking-up lengths

For weak disorder the density of elementary excitations is
very small and the average distance between two excitations
is given by L:~p, (87" and L’ ~p_(8)~' in the two
phases, respectively. Lll and L” can be interpreted as
breaking-up lengths, since in a finite system of linear size
L<Li, the optimal set is homogeneous. Using results about
the critical densities we obtain

log,L2 = (1426-28+\1+46)128,

logoL2 = (5" =13+ (5" -1)%, (15)

which in principle is valid only at §=48,(l); however, as an
interpolation formula we can use them for not too small Js,
too.

It is easy to see that the braking-up lengths in the ordered
phase are much smaller than in the disordered one. For ex-
ample, at the value of 6=1/2, which corresponds to the ex-
istence of a single hole in the ordered phase and to a [=2
connected cube in the disordered phase, respectively, L’ =4,
whereas L2 ~2'3. We have checked the accuracy of the for-
mula in Eq. (15) by comparing the predicted breaking-up
disorder 5f for a given size L with that calculated numeri-
cally. As seen in Table I there is a satisfactory agreement,
even for not too small &’s.

026126-4



CRITICAL AND TRICRITICAL SINGULARITIES OF...

TABLE 1. Breaking-up disorder in the ordered phase: compari-
son of the interpolation formula in Eq. (15) with numerical results.

L 8 San
7 0.466 0.469

0.454 0.458
15 0.434 0.438
17 0.430 0.435
23 0.420 0.429
31 0.412 0.423
39 0.406 0.418

IV. NUMERICAL RESULTS

In the numerical calculation we have treated samples with
random couplings having a cubic shape with periodic bound-
ary conditions and a linear size L=16, 24, 32. For 6=0.875
we went up to L=40 and in some cases we made calculations
for odd values of L, too. The free energy as well as the
magnetization is calculated exactly by the combinatorial op-
timization algorithm, called “optimal cooperation” [18], and
averaging is performed over several thousands of samples;
for the largest size, the number of realizations was several
hundreds. For a fixed temperature the optimal cooperation
algorithm works in strongly polynomial time. As we have
already mentioned in the application of the method in 2D
[10] for a finite system the free energy is a piecewise linear
function of the temperature. For the bimodal disorder the
number of linear parts, N, is found to increase with the size
of the system, L, as well as with the disorder strength 6. A
rough estimation yields

N, = CL'"?, (16)

with the constant C around one-half. We have managed to
implement our method in such a way that we can calculate
the free energy in the whole temperature range—i.e., in all
linear parts. Note that with the hypothesis (16) the exact
calculation of the free energy in the whole temperature range
is still polynomial, whatever the value of the disorder 6.

As we have shown in Sec. III F the breaking-up length is
large for weak disorder and it is of the order of L?=40 for
6=0.4. Therefore we have restricted ourselves to the disor-
der range 0.4 < =<1, which contains all interesting parts of
the phase diagram.

A. Phase diagram

The numerically calculated phase diagram as a function of
disorder and temperature is already presented in Sec. II in
Fig. 2; here, we give a detailed analysis of the results. The
phase boundary between the ordered and disordered phases
is calculated by considering two quantities. Finite-size or
percolation transition temperatures 7.(L) are identified in
each sample at the point where the largest connected cluster
of the optimal set starts to percolate the finite sample. The
distribution of T.(L) is shown in Fig. 3 in the first-order
transition regime (6=0.5) and in Fig. 4 in the second-order
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FIG. 3. (Color online) Distribution of the finite-size percolation
transition temperatures in the first-order transition regime at &
=0.5 for three different sizes. The Gaussian distributions having the
same average and variance are normalized and serve as a guide to
the eye.

transition regime (5=0.875).

While for §=0.875 the distribution of the transition tem-
peratures is well described by a Gaussian even for relatively
small systems, for 6=0.5 the distributions show deviations
from a Gaussian. As we can see in Fig. 3 in the first-order
regime the distribution for finite L consists of well-separated
peaks and it becomes (quasi)continuous only in the thermo-
dynamic limit. Also the distributions are nonsymmetric and
the skewness seems to vanish slowly with the size of the
system. It is also evident from Figs. 3 and 4 that the finite-
size shift of the average transition temperature has a different
sign in the two regimes and it is much smaller for a first-
order transition in particular if we compare with the variation
of the width of the distributions. On the contrary in the
second-order transition regime these two characteristics of
the distribution are in the same order; see Fig. 4. These ob-
servations are in accordance with the scaling picture in Sec.
IIT E, which predicts two different exponents ¥ and v in the
first-order transition regime, whereas in the second-order re-

70 r T T T T
L=11 ——
L=47 ——
60 [ L=25 ——

50

40

P(Tc)

30

20

FIG. 4. (Color online) The same as in Fig. 3 in the second-order
transition regime at 6=0.875.
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gime these exponents are the same. However, due to the
comparatively small sizes we have and the deviations of the
distributions from the Gaussian, we could not numerically
estimate these exponents.

We have also calculated the transition temperature from
the position of the maximum of the averaged specific heat,
C,(T,L), which is expected to be shifted in finite systems as
the maxima of T.(L), as given in Eq. (11). Indeed the nu-
merical results on the specific heat in Fig. 9, below, at 6
=0.875 are compatible with the same estimate for T, as
obtained in Fig. 4 through the percolation transition tempera-
tures.

As discussed before magnetic order in the system is re-
lated to the properties of the largest connected cluster in the
optimal set: it has a finite extent in the disordered phase,
whereas a finite fraction of sites belongs to this cluster in the
ordered phase. The optimal set in the ordered phase, how-
ever, can be of two different kinds as far as the structure of
isolated points is considered. For weak disorder, << 5[,,, or
for low temperature, 7<<T,,, the isolated sites form finite
clusters. This is always the case in 2D. In 3D, however, this
is a new feature of these systems for strong enough disorder
and at high enough temperatures the isolated sites percolate
the sample, too. This percolation regime is also indicated in
Fig. 2, and we argue below that its existence close to T, is
necessary to have a second-order transition in the system.
Indeed, the correlation length in the ordered phase is given
by the size of the largest connected finite cluster, which is
isolated from the giant connected cluster. Since this large
finite cluster is embedded into isolated points, its size can be
divergent at T, only if the isolated sites percolate the sample.
In this way we obtain for the value of the tricritical disorder,
0,, separating the first- and second-order transition regimes,
that it satisfies the relation

5,=6,,. (17)

pr

The numerical results which are presented below are in favor
of the conjecture that in this relation the equality holds.

For the percolating transition temperature of the isolated
sites, T,,(8), we make the following calculation. In the dilute
model, 6=1, all the strong bonds, J,=2J, are present in the
optimal set, provided the temperature is below the value of
J,. For T>J,, however, in the optimal set there are no dan-
gling bonds; i.e., by increasing the temperature over 7=J,
sites which have just one strong bond are removed from the
optimal set. Since the dangling bonds are a finite fraction of
the bonds [34], the nonconnected sites become percolating at
T,(1)=2J. For §<1 there are also weak J, bonds in the
system and the removal of one strong dangling bond from
the optimal set is accompanied by the removal of some weak
bonds at the same time. The average number of removed
decorating weak bonds is 4, which is possible in the tempera-
ture range

T,>T>T,(8)=J,+41,=J(5-35). (18)

The numerical results show that at Tpr( ) in a finite fraction
of samples there is a giant cluster of isolated points which
spans the finite cube; see Fig. 5.
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FIG. 5. (Color online) Magnetization and percolation probabili-
ties of the optimal set (“Present” for the occupied bonds of the giant
cluster, “Absent” for the isolated sites) of the random model with
6=0.875, as a function of the temperature in a finite lattice with
L=24. The arrow at T=T,,=2.375J indicates the percolation tem-
perature in Eq. (18), and for T<T,, the magnetization is close to
that for ordinary percolation. The singular jumps in the magnetiza-
tion are a consequence of the discrete form of the probability dis-
tribution. Inset: in the vicinity of the transition point the magneti-
zation and percolation probability of the present bonds are close to
each other; the differences are due to finite-size effects.

At the percolation transition temperature there is a sudden
change in the structure of the giant connected cluster, which
results in singularities in the thermodynamical quantities. As
an illustration we show in Fig. 5 the temperature dependence
of the magnetization at 6=0.875—i.e., in the second-order
transition regime. The magnetization goes to zero at the
phase-transition point, which—in the thermodynamic limit—
coincides with the percolation transition of the occupied
bonds. For finite systems the magnetization and probability
of having a spanning cluster have small deviations, as illus-
trated in the inset of Fig. 5. The magnetization has other
singular jumps for 7<<T,, which are due to the discrete form
of the disorder. Among these singularities the most pro-
nounced is that around the percolation temperature at 7,
=19/8. As seen in Fig. 5 the percolation probability of the
isolated sites has a finite value at 7, and it goes to the value
of 1 within a small temperature range. It is expected that by
decreasing the disorder to the tricritical value, the singulari-
ties at 7, and T}, merge into a new type of tricritical singu-
larity.

B. Order of the transition

To decide about the order of the transition one generally
studies the behavior of the latent heat in the system. This
type of analysis, however, for the large-g-state Potts model is
complicated, if the disorder is discrete, as in our case. As
already discussed in 2D [10] the internal energy of the sys-
tem displays discontinuities, both at and outside the critical
point. These discontinuities, however, are generally con-
nected to such degeneracies of the optimal set which are
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FIG. 6. Temperature dependence of the magnetization in the
transition region for L=16 with different strengths of disorder.
From left to right: 6=0.5, first-order regime; 5,=0.6593, tricritical
point; 6=0.925, second-order regime.

related to the removal of a finite number of bonds and thus
do not modify the global structure of the giant connected
cluster. As a consequence these singularities can not be in-
terpreted as the sign of a first-order transition. In 3D and for
the bimodal disorder used in this paper this type of nonge-
neric discontinuities of the internal energy is also present and
therefore we did not try to make an analysis of this quantity.

Instead we have studied the magnetization in the system,
which is defined as the fraction of sites in the largest con-
nected cluster. A jump in the magnetization indicates a fun-
damental change in the shape of the largest cluster, thus a
first-order transition. The magnetization as a function of tem-
perature is shown in Fig. 6 for different values of the disor-
der corresponding to the different transition regimes. A direct
measurement of the jump in the magnetization is possible
only up to §<0.6 (see Ref. [19]), whereas the lower limit of
the second-order transition regime is estimated through the
calculation of the fractal dimension of the giant cluster at the
transition point (see Fig. 2). This type of analysis at &, (see
Sec. IV D) has given a fractal dimension d}< 3, which to-
gether with Eq. (17) indicates that the first-order transition
regime stops at &,,.

C. Second-order transition regime

In the second-order transition regime we have made de-
tailed calculations at the disorder 6=0.75,0.8,0.875,0.925
and at 6=1. The most detailed studies are performed at &
=0.875, in which case the largest system is L=40, and for the
other cases we went up to L=32. With these investigations
our aim was to check the universality of the critical proper-
ties of the system.

The magnetization exponent [ and the magnetization
scaling exponent x=3/ v are related to the fractal dimension
of the giant cluster, df, as d—x:d_f. Among these critical
parameters it is the fractal dimension which can be deter-
mined with the highest precision. To obtain the fractal di-
mension we considered a reference point of the percolating
cluster and measured the mass (number of points) in a shell
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FIG. 7. (Color online) Scaling plot of the mass of a shell of the
infinite cluster, for each size at the average spanning temperature
(see text), at 5=0.875. Optimal collapse is obtained with a fractal
dimension d;=2.40. Inset: area of the collapse region as a function

around the reference point with unit width and radius r. The
average mass s(r,L,T) is expected to scale close to the tran-
sition point, t=(T-T,)/T.<1, as

s(r,L,t) = LY 'S(r/L,tLV"). (19)

Generally, one sets the second argument of the scaling func-
tion 5(p, 7) to be zero by performing the calculation at the
transition temperature 7=T7,. In our case T, is not known
exactly; therefore, we have used another strategy. For each
size we set T=T, (L), which is the average finite-size (perco-
lation) temperature at the given size. With this choice the
second argument of the scaling function, 7, is asymptotically
constant and thus the scaling function depends only on one
parameter §=5(r/L). Our scaling picture is checked in Fig. 7,
in which the scaling plot of the mass in the shell is shown for
0=0.875. The accuracy of the scaling collapse is measured
by the area of the collapse region which is shown in the inset
of Fig. 7. It is seen that the optimal scaling collapse is ob-
tained with a fractal dimension d;=2.40(2). This type of
analysis of the fractal dimension is repeated for other values
of the disorder, too. Since in these cases the available sizes of
the systems are comparatively smaller, we have somewhat
larger errors. The fractal dimensions are shown in the inset of
Fig. 2.

The correlation length critical exponent v can be calcu-
lated from the shift of the finite-size critical temperature, as
given in Eq. (13). However, this method has quite a large
error. A more accurate estimate can be obtained from the
scaling behavior of the magnetization: m(t,L) =L (tL"").
Here we set x,,=d—d, from the previous calculation, and
from an optimal scaling collapse as shown in Fig. 8 we have
obtained v=0.73 (2). (The area of the collapse region as a
function of v is shown in the inset of Fig. 8.) Note that v
satisfies the rigorous bound for disordered systems [35]: v
=2/d.

Finally, we have investigated the behavior of the specific
heat at the transition point. As seen in Fig. 9 the maximum of
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FIG. 8. (Color online) Scaling plot of the magnetization at &
=0.875 as a function of the distance from the critical temperature.
By fixing B/v=d-ds;=2.4 the best collapse is obtained with v
=0.73(2). In the inset the area of the collapse region is shown as a
function of v; the arrow indicates the position of the minima.

the specific heat is increasing with size; therefore, from the
finite-size scaling result C:"$(L) ~ L*” one would conclude
a>0. This is, however, in conflict with hyperscaling and
with the bound of v in disordered systems. Therefore we
tried to fit the numerical data by including a constant on the
right-hand side of the finite-size scaling form. The fit in this
way, however, is not satisfactory. In order to get a nonposi-
tive a, one should have a constant which is more than one
order of magnitude larger than the finite-size data. Therefore
we have concluded that the asymptotic regime of the specific
heat is very far from the possibilities of present-day numeri-
cal calculations.

D. Tricritical transition

Analyzing the structure of the optimal set in the ordered
phase we have got a relation between the tricritical disorder

100
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FIG. 9. (Color online) Finite-size specific heat as a function of
temperature at 6=0.875. According to hyperscaling the maxima of
the curves should approach a finite limiting value. The relatively
large errors are due to numerical derivation of a piecewise linear
function.
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FIG. 10. (Color online) Scaling plot of the mass of a shell of the
infinite cluster analyzed along the percolation transition tempera-
ture, Eq. (18). For each size we fix the disorder and thus the tem-
perature as the average spanning temperature; see text. Optimal
collapse is obtained with a fractal dimension d’=2.94. Inset: area of
the collapse region as a function of d;

and the percolating disorder, as written in Eq. (17). Later we
have conjectured that in this relation probably the equality
holds; i.e., at the tricritical point three regions (disordered
phase, ordered phase, and percolating regime) meet. Here we
check this conjecture numerically in the following way. We
move along the analytical continuation of the percolation
transition line in Eq. (18) for 6< 4, (thus for 7>T,,) and
calculate the finite-size transition point, which is located at
such &(L) for which in half of the samples the giant con-
nected cluster percolates the finite cube. Then we have ana-
lyzed the fractal properties of the giant connected cluster and
repeated the procedure as described in Sec. IV C for the
second-order transition regime. Using the relation about the
number of sites in a shell in Eq. (19) and fixing the tempera-
ture for each size through &(L) we have made a scaling
analysis as in Fig. 7 for the second-order transition regime.
According to the results in Fig. 10 the giant cluster is a
fractal and the best collapse of data is obtained (see inset)
with d}: 2.90(2). This value is definitely different from that
at a first-order transition, df=d =3, and also differs from that
in the second-order transition regime. Thus our numerical
results are in accordance with the conjecture that the tricriti-
cal disorder is given by

8= By

Our numerical data are very sensitive to the value of &, and
by extrapolating the finite-size results obtained from the best
collapse we find 6=0.659 30(5) and 7=3.0221(1). Further-
more, we obtain the estimate for the anomalous dimension of
the tricritical magnetization, x/,=0.10(2).

In order to calculate the correlation length exponent v at
the tricritical point we consider the magnetization m(z, 7,L)
as a function of reduced temperature ¢, difference of the tri-
critical disorder, 7=(8,— )/, and the size L. According to

finite-size scaling we have m(t,,L)=L %wii(L"" tL"),
and by having a disorder &,(L) [thus 7(L)] for each finite size
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FIG. 11. (Color online) Scaling plot of the magnetization at the
finite-size tricritical disorder as a function of the distance from the
tricritical temperature; see text. By fixing B/ v=d—d}=2.90 the
minimum of the collapse region (see inset) is obtained with »
=0.64.

we fix asymptotically the first argument of the scaling func-
tion. Consequently from the optimal scaling collapse of

m(t,T(L),L)LX;l we can obtain the correlation length expo-
nent. We noticed that at the tricritical point the estimate for v
is more sensitive to the range in which the collapse is per-
formed. Using the symmetric region indicated in Fig. 11 the
minimum of the scaling area in the inset of Fig. 11 is at v
=0.64. However, using an asymmetric window —0.1<(T
-T.)LY"<0.3, we obtain a value which is slightly larger
than the borderline value v=2/3 according to the criterion by
Chayes et al. [35]. Therefore we conclude the estimate of the
correlation length exponent at the tricritical point as v
=0.67(4).

The tricritical fixed point of the random-bond Potts model
in the large-g limit is related to the critical fixed point of the
random-field Ising model according to a mapping due to
Cardy and Jacobsen [6]. As described in Ref. [6] the inter-
face Hamiltonians of the two problems in the solid-on-solid
approximation are equivalent to each other in d=2+ € dimen-
sions, and this mapping is expected to hold for larger values
of d, in particular for d=3. According to the mapping mag-
netizationlike excitations of the RFIM correspond to energy-
like excitations in the random-bond Potts model. In particu-
lar the correlation-length exponent at the tricritical point of
the RBPM is conjectured to relate to the critical exponents of
the RFIM as

v= (B + ). (20)

For the 3D RFIM with Gaussian disorder recent estimates of
the critical exponents are [36]

HF=13709), BRF=0.017(5), =2.04(14),

(21)
which imply, through Eq. (20), »=0.67(2), which coincides
with our direct calculation. In this way our study of the tri-
critical singularities lends support to the mapping by Cardy
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and Jacobsen. The tricritical magnetization exponent x!, we
calculated above cannot be predicted by the mapping, and
therefore it gives a completely new piece of information.

Finally, we note that in the spirit of the RG description the
number of Potts states, more precisely In ¢, is a dangerous
irrelevant scaling variable. Therefore the calculated tricritical
exponents are expected to be g independent and probably
universal for any three-dimensional systems in which the
first-order transition in the pure systems is soften by tricriti-
cal disorder. As a matter of fact, it is much easier to compute
the free energy of the Potts model at infinite ¢ using sub-
modular functions theory than at g very large. This will make
it difficult to check the assumption above, at least numeri-
cally and in the framework of the Potts model.

V. DISCUSSION

Here we discuss some aspects and possible extensions of
our results obtained in the previous sections.

A. Dynamical behavior for weak disorder

In a random ferromagnetic system having a second-order
transition point different dynamical quantities (susceptibility,
autocorrelation function, etc.) are singular outside the critical
point and this regime is called the disordered and ordered
Griffiths phases [37]. The singular behavior is due to rare
regions which, due to strong disorder fluctuations, are locally
in the nonstable thermodynamic phase of the system. It is
easy to see that similar effects can be observed outside and at
a first-order transition point, as we show in the following for
our model with weak disorder. Note, however, that our nu-
merical results concern infinite ¢, for which no dynamics is
defined. Indeed, only the spin state compatible with the dia-
gram(s) maximizing the function in Eq. (4) are possible, all
these states being equiprobable. The analysis below refers to
q very large, but finite.

In the disordered Griffiths phase of the random-bond Potts
model such a rare region is a domain (cube) of linear size [,
having only strong couplings, as described in Sec. III B.
These regions are indeed rare since they appear with a prob-
ability P(1) ~23"~™ In such a cluster in equilibrium all the
spins are typically in the same state, provided the conditions
in Sec. III B are fulfilled. However during a relaxation pro-
cess they flip into another parallel configuration. Having
heat-bath dynamics the relaxation time ¢, can be estimated in
such a way that in a thermally activated process the cluster
should overcome an energy barrier AE([), which is the en-
ergy of creation an interface in the system. The relaxation
time is then given by t,~exp[BAE(l)]. Generally the inter-
facial energy is proportional to the number of sites involved
in the interface: A(l) ~19"'¢,, where &, is the width of the
interface. It is known [38] that outside the first-order transi-
tion point &, is finite, whereas at the transition point it is
divergent as &, ~[¢ with a thermal wandering exponent {
=(3-d)/2. In particular at d=3 we have a logarithmic diver-
gence. Now calculating the distribution of relaxation times
we obtain P(t,) ~exp[-A(In t,)¥*], where w=d—1 and A is a
constant, outside the transition point of the cluster and w
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=d-1+/, close to the transition point. Then the average au-
tocorrelation function is given by

G(1) ~ f dt,P(t,)exp(— t/t,) ~ exp[- A(In 1)¥*], (22)

which has a different form at the first-order transition point
and in the disordered phase.

B. Effect of the form of disorder

In this paper in the numerical studies we considered a
bimodal—i.e., discrete—form of disorder. This was mainly
due to technical simplifications. The basic behavior of the
system, in particular its critical properties, is not expected to
change using a continuous form of disorder. For example, the
phase diagram has the same topology as shown in Fig.
2—i.e., disordered and ordered phases and first- and second-
order transition regions. The percolation region of the or-
dered phase also exists, and very probably the tricritical
point is located at the meeting point of these three phases or
regions. Also the critical singularities at the second-order
transition line are very probably disorder independent, as we
have already observed in the two-dimensional problem [10].
The same question for the tricritical transition is more diffi-
cult to answer. Having in mind that the 3D RFIM might have
disorder-dependent singularities [39] the same can be true for
the tricritical singularities, due to the mapping as described
in Sec. IV D. Finally the discrete nature of the disorder can
result in nonphysical discontinuities in the internal energy,
which are washed out by continuous disorder.

C. Effect of the number of states, ¢

In the second-order transition regime the critical expo-
nents are g dependent, which can be seen from the results of
numerical investigations [13,14], and the same scenario
holds in two dimensions, too. The tricritical singularities,
however, at least those which are related to the energy den-
sity, are very probably ¢g independent and thus “hyperuniver-
sal.” It would be very interesting to check this statement for
other systems, since the Potts model in three dimensions for
q finite, but very large, seems out of reach of the usual meth-
ods. Finally we mention that nonphysical discontinuities in
the internal energy are also absent for finite values of g.
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D. Model with correlated disorder

Finally, we consider our model with correlated disorder,
in which translational invariance is present in the vertical
direction, in which the couplings are constant, J | , whereas in
the horizontal 2D planes the couplings are random, J;;, and
strictly correlated in each plane. This type of columnar dis-
order was introduced by McCoy and Wu in the 2D Ising
model [40]. Due to translational symmetry in the vertical
direction, the model is conveniently studied in the transfer
matrix formalism. Using the extreme anisotropic limit of the
model [41], when J, /J;;—0, the transfer matrix is written in
the form 7=exp(—7H), where 7 is the infinitesimal lattice
spacing and H is the Hamiltonian operator of the 2D quan-
tum Potts model with random couplings. This latter model
can be studied by a strong disorder renormalization group
method [42] which leads to g-independent critical properties.
According to numerical results [42,43] the correlation length
critical exponent is v=1.15(10) and the anomalous dimen-
sion of the magnetization is x; =0.97(3). This latter result
implies that the fractal dimension of the giant anisotropic
cluster is given by dj=d-x;,,=2.03(3), and evidently d;
<dj. Starting with the anisotropic model we can go to the
isotropic model by letting the couplings be random in the
vertical direction, too. Our results indicate that during this
process the mass of the largest cluster is increasing; i.e., the
creation of new connected parts is more effective than the
creation of isolated sites. This result is in accordance with
the form of the phase diagram in Fig. 2, in which due to a
similar process the ordered phase has a larger extent with
increasing disorder. We note that in 2D our numerical results
show [10] that d¢"=dy, which led us to conjecture the exact
values of the critical exponents in the random-bond Potts
model. Here we have argued that in 2D due to duality the
creation and destruction processes play equivalent roles and
therefore the fractal dimension stays unchanged.
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